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Invariant power law distribution of Langevin systems with colored multiplicative noise
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The random multiplicative process is studied for the case of a colored multiplicative noise with exponen-
tially decreasing autocorrelation function. We observe the power law exponent of probability distribution in a
statistically steady state numerically to clarify the effect of finite correlation time. The renormalization proce-
dure is applied to derive the power law exponent theoretically. The power law exponent is inversely propor-
tional to the autocorrelation time of the multiplicative noise.
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I. INTRODUCTION with colored multiplicative noisg€l4] since the velocity field
in turbulence has strong autocorrelatioren@s and Lustfeld

Fluctuations following power law distributions have beenhave studied the case of the RMP with chaotic multiplicative
found in various fields, such as size distribution of ava-noise in on-off intermittency5] and Nakad 16] has reported
lanches in a sandpile modEl], probability distribution of that the RMP with colored multiplicative noises shows the
stock market price changes in econonjizl and probability ~ Power law behavior by numerical simulations.
distribution of the fluctuations of the intervals of heartbeats A question naturally arises whether there is a simple re-
[3]. There have been many attempts to clarify the mechanisr@tion between the autocorrelation function of multiplicative
of the power law behavior. For example, the concept of selfnoise and the power law exponent as well as in the case of
organized criticality is based on the idea that open system#hite multiplicative noise. The aim of this paper is to quan-
showing the power law exhibited by some open systems mafjtatively investigate the power law behavior of the RMP
be understood in analogy to automatic setting of the paramwith colored multiplicative noise by numerical simulations
eters at the critical point of a second-order phase transitiognd to clarify the relation between the autocorrelation and
[1]. the power law exponent theoretically.

The random multiplicative procesd&RMP), which is a In Sec. Il we perform a numerical simulation of the RMP
generalized version of the Langevin equation involving aand observe the relation between the exponent of the power
randomly multiplicative coefficient, is another type of law distribution and the autocorrelation time. In Sec. Il based
mechanism generating a power law behavior. It has beefin the idea of renormalization procedure we analytically es-
widely introduced as a model to understand aspects of thémate the relation. We discuss the validity of the method
singular behavior in nonlinear dynamics, such as the on-ofthat we used in the theoretical approach in Sec. IV and con-
intermittency{4,5], conformation of polymers in random ve- cluding remarks are summarized in Sec. V.
locity field [6], the model of stock market price changes in
economicg7], and so or{8,9]. II. NUMERICAL SIMULATIONS

In our previous study10] we have proved rigorously that
the discrete version of the RMP with both a positive multi-
plicative and additive noises converges to a statistically We treat the discrete version of the RMP
steady state that is characterized by power law distribution.

We have analytically obtained the equation for determining x(t+1)=b(t)x(t)+f(1), @
the power law exponent as a function of a stochastic propert S . o

of nF:uItipIicative F;1oise by using a characteristic fupnct?on %/here multlpl|cat|ve_r_10|s_é)(t) represents random dissipa-
method. The exponens is given by the value where the t|on.(.b<1)_or magnlflcatlor] >1) an_df(t) represents an
B-order moment of the multiplicative noise is equal to unity. f"ldd't“{e noise. In the following analysis we assume t(a)
The existence of the additive noise is essential but its statis® statistically independent df.(t)' So that the cross corrglg-
tical properties are known to be less relevant. It has beef{on Petweerb(t) andf(t) vanishes, and we use the additive

analytically proved that the probability density of the RMp N0isef(t) that is a zero-mean white Gaussian given by

A. Model and simulation

follows power law[4,11,13. 5
It is useful to consider the effect of correlated multiplica- U(f)= 1 exn — f_ )
tive noise to extend the applicability of the RMP to compli- V2o 202)"

cated systems in the real world. For example, aspects of the

behavior in on-off intermittency4,5] and the noisy coupled where the standard deviation is fixed @s 0.01 throughout
maps[13] can be regarded as RMPs with colored multipli- our numerical simulation.

cative noise, and they have been analyzed by usin¢ptied For simplicity we specify the colored multiplicative noise
or finite time Lyapunov exponenh the study of particles’ as a noise having the following stationary, Gaussian, Mar-
motion in turbulence Deutsch has been interested in the RMRovian property that has zero average and variarnce
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FIG. 1. Time series ok(t) for V=1.0 andr.= 1.0 in the case of FIG. 2. Log-log plots of the cumulative distributions ®ffor
the colored Gaussian multiplicative noise. various values o¥/ and .. Filled squares represelt=0.49 and
7.=1.0, unfilled squared/=0.49 and7.=5.0, filled circlesV
1 b2 =1.0 and7.=1.0, and unfilled circle¥=1.0 and7.=5.0.
W(b)= ——=exp — = (3
27V 2V . N . : .
since we find isometrig3 curves mutually nonintersecting.
with autocorrelation function given by Espeqally noticing thg relatlon. betwgﬁmand Te, frqm Fig.
4, which is taken for fixed/, B is estimated to be inversely
R(7)=(b(t)b(t+ 7)) —(b(t){b(t+ 7)), (4)  proportional tor, for large value ofr., namely, we have
which decays exponentially B Tgl. (10)
R(7)=Vexp —1/7.), (5)

. . . . B. The white Gaussian limit
where 7. is an autocorrelation time. It is known that we can

easily generate such types of random sequences by an au- The colored Gaussian noise given by Eg).converges to
toregressive stochastic procdds]. In order to satisfy the @ White Gaussian noise in the limit a—0. Here, we dis-
stochastic properties EqE3) and (5), we take the following ~ cuss the limit of the zero-mean white Gaussian multiplicative

stochastic process: noise. For this case we cannot directly apply the formula
obtained in our previous study to the zero-mean white
eleb(t+1)—b(t)=VeZe—1w(t), (6) Gaussian noise in order to estimate the power law exponent

_ _ _ _ B because they take both positive and negative values. In the
wherew(t) is a normalized zero-mean white Gaussian noisesame way as we have shown in our previous study we can

We make numerical simulations of E() for parameters  easily generalize the formula for a noise having both positive
Vandr.. We show an example of time serief) in Fig. 1. and negative values

For investigating the tails in the probability distribution it is
convenient to use the cumulative distribution function
(CDPF), P(=]x|), defined as

P(=lx) - |

—o0

X| ©
D(X')dX”rJ'lxp(X')dX’, () 1

where p(x) denotes a probability density function of
When the probability density has the power law tails

p(x)=|x["F71 (0<B<2), ®)

one has K

A~ G O N ©O O O
7 T

/

J

1

P(=[x]) (x| 77, ©)

and we can estimate the power law expon@ifitom its slope
of the log-log plot. We also take the CDF from a time series
on 1¢F steps for each set &fand .. As shown in Fig. 2 we 0
can find clear power law tails in the CDFs. In all cases we 04 05 06 07 08 09 1
can find power law distributions and the exponghbbvi-
ously depends on bot#f and 7.

In order to investigate more quantitatively the dependence
of 8 onV andr, we plotS as a function ol andr.. From FIG. 3. Each curve represents isometficfor the function
Fig. 3 we may expect that the form @f(V,7;) is simple  B(V,7,).

1%
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FIG. 4. Log-log plots of relation betwee@ and 7, on some FIG. 6. Log-log plots of the cumulative distributions »ffor
fixed values ofV. Each mark represents a numerical resultor V=1.0, V=0.81, andV=0.64 in the case of the white Gaussian
and a solid line represend= 7-;1. multiplicative noise. We find that each slope of plots changes for

the value ofV.
(Iblf)=1 (0<B<2). 11 _ _ _
way. We may deal witlh™ as an independent set of multi-
Using Eq.(11) one can analytically calculaj@ as a function  plicative noises because we can roughly estimate that multi-
of a varianceV of the Gaussian for the case of zero-meanplicative noises keep the same values in the interyallThus
white Gaussian multiplicative noise. Applying E§) to Eq.  we may apply Eq(11) for a white multiplicative noise to a

(11) we have renormalized multiplicative noisk™,
1 +1 {|b7e|Py=1. (13
(2v>ﬁ’2r( d ) =1, (12)
G Since the renormalized multiplicative noise may be expected

. . to depend orV alone, we find the exponen(V) for B¢,
wherel'(- - -) is the gamma function.

We show an example of time series in Fig. 5 in the white Br.=c(V), (14
Gaussian limit. We take the CDF from 86teps of the time
series for each fixed value &f. It is found that for each Wherec(V) is a power law exponent for the renormalized
value of V a slope of log-log plot changes in Fig. 6. We multiplicative noiseb” and a function ol alone. Thus3 is
obtain the relation betweevi and 8 from each slope of the inversely proportional ta.. In Sec. Ill we study the relation
CDF. As shown in Fig. 7 we can confirm that the theoreticalbetween the power law exponent and the autocorrelation
solution Eq.(12) fits the numerical estimation precisely. time more rigorously based on an analytical estimation of the
These results mean that one can fully characterize the powéttuitive idea of renormalization.
law exponent as a feature of multiplicative noise in the limit
7.— 0. Therefore, we find thg® converges to a finite value Ill. THEORETICAL ANALYSIS
on the limit of 7.—0 in spite of Eq.(10) as shown in Fig. 4. A. Renormalization procedure
C. Intuitive understanding of the result Focusing on the relation that power law exponghts
inversely proportional to the autocorrelation timg, we
analyze the RMP theoretically. Our idea of derivation is
based on a kind of renormalization procedure that has also

We can give the intuitive reason why the power law ex-
ponent B is inversely proportional tor. in the following
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FIG. 7. The power law exponerg vs varianceV of a white
FIG. 5. Time series ok(t) for V=1.0 in the case of the white Gaussian multiplicative noise. Circles represent numerically esti-
Gaussian multiplicative noise. mated values and the curve gives the theoretical relation.
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been argued by Nakdd6]. Substituting Eq(1) recursively A=Ak menAn) = A ms ) Ak )
k times we have the renormalized representation ftenk ’ ' ’ ' '
+1 step tot+1 step =(Am+1Ak D) = (Am+ 21 {( Ak D)

k—1 :<()\Mk+l+'"+)\(Mfl)k)()\l+'"+)\k)>—k2v
X(t+1)= Ho b(t—m) | x(t—k+1) o M

k=2 (| => NKM + 1)k—nT KKpmict > NKM-1)k—n -
n=1 n=1

- [ I1 b(t—m)]f(t—l—1)+f(t).

1=0 {m=0 Substituting Eq(18) to the end term of the above equations

(15  Wwe have

Defining the renormalized multiplicative noid® (N) and ~le

—KkM/7* *\
renormalized additive noisg,(N) as e c[coshk/Tc)—4],

Agy=2D——o—
k.M (1_871/76)2

(N=1)k—1 (20
B«N)= [[ b(m-1), (168 which converges to @ function in the limit of k—o. As
=Nk . . .
Ay n can be approximated by a white noise for laigeve
(N+ 1)k—2 | may apply the equation determining the power law exponent
Eqg. (11) to the renormalized multiplicative nois&, with
Fo(N)= I=§l:\lk mg\lkb(m—l) f(1—2)+f(KN—1), large k.

(16b) On the other hand, it is easy to confirm that the autocor-
relation function of the renormalized additive nolSgN) is

we obtain the renormalized equation with intervilfor N a white noise, actually the autocorrelation functior-QfN),

=12 ... C(M), is calculated as
Ci(M)=(F (N)F (N+M))—(F(N))F«(N+M))=0.
Xk(N):Bk(N)Xk(N—1)+Fk(N), (17) k( ) < k( ) k( )> < k( )>< k( )> (21)
wherex,(N) representx(kN—1). Replacingb with e*« in Eq. (11) we have
Ay —
B. Another representation of multiplicative noise <e'3k =1, (22

We introduce a stochastic variablg defined byb(t)  where g, is the power law exponent of the renormalized

= expQ+if), in order to approximate Eq17). Here 6;  variablex,(N). Rewriting Eq.(22) by an integral
represents a binary random variable taking the value of 0 and

7 with the same probability, which is required to represent A

the change of sign ix,(N) and x,(N—1). A\, of course, f Pa(Ask)estdA=1, (23)
differs from that ofb(t). As we discuss in Sec. IV A we can

make a reasonable assumption thats a stationary Gauss- whereP (A ;k) represents the probability density af, in

ian noise having an average=(In|b|) and its autocorrelation the renormalized levek. Moreover by making a transforma-
function «,,, decreases exponentially tion of the probability density involving Dirac’'é function

from P, (A;K) to g(Ay, ... \q1),
Km:<)\n+m7\n>_<)\n+m><)\n>:D qu_m/T:)a (18
PA(A;k):f (N, - Ng)

XO(N+ - +N—A)d\---dNq, (29

whereD is a coefficient and}; is the autocorrelation time.
The value ofrs is shown to be nearly equal tg by com-
paring the two autocorrelation functions, which we also

show in Sec. IV. whereq,(N1,A2, - .. ,\,) iS ak-joint probability density of

The effect of ¢, does not play any role in the following )y "\ nich is represented by ledimensional Gaussian dis-
calculation because, is a factor that randomly reverses the (i tion

sign of multiplicative noises and the effective amplitude is
always unity. Approximating the renormalized multiplicative An(Nghgs - o A
noiseB(N) by A\; we haveB,(N)= exp(Av), where

1 1 "
-1 —_— —_
R :Tmexp<—§.2 R =M =N) |
Ay n= > A1 (19 (2m)"R] ij=1
m=KkN (25)

SinceA \ is stationary foN the autocorrelation function of where R; ; denotes the covariance matrix that is equal to
Ay n on the renormalized levdd, A\, is given as K|i—j» SO that
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and|R| means the determinant &; ;. From Eq.(23) and
Eq. (24) we have
f BN N (N, o AN - ANy =1, (27) . FIG. 8. Plots ofg as Tunctions ofr, fixing D aﬂdf. Unfilled
circles represent numerical results for=1.0 andA=-1.0, and

filled circles are forD=0.64 and\=—1.0. A solid curve repre-
sents the theoretical equation f@r=1.0 and\=-1.0, and a
dashed curve is fob =0.64 and\ = —1.0.

Substituting Eq(25) for Eq. (27) we have

k
— Bk
ex KN+ — R =1, 28
’{ﬁk 2 i,JE:l ] 8 IV. DISCUSSION
<o that A. Relation betweens; and 7}
The autocorrelation time of,, 7 , in a theoretical cal-
- Igﬁ k culation is not automatically identical to the autocorrelation
Bik\ + > _21 R;j=0. (29 time of b, 7., in a numerical simulation. In the following we
1,]=

verify 7.~ 75 by calculating a relation betwed®(7) in Eq.
(5) and R*(7) approximated by\,. The autocorrelation

As a nonzero solution we get . . .
9 function R* (7) is expressed in terms of; as

. 2kn a0 R* (7) = (eMeMt+r) — (ert)(eht+). (34)
S S—
E Ri; From Eq.(26) one can calculate the first term and the second
IR term on the right-hand side
Calculating the denominator on the right-hand side using Eq.
(18), (eMettrr)= f eMeMrrg (N, . A AN - dhg
. Zkf(l_e—llrg)z - = exd D exp(— 7/ 7 )]ezﬂo (35
k D[k(l_e—ZIT:)_28—1/72(1_e—k/-r:)]' and
Finally in the limit of k—o we have <ex,>:<ext+f>:ezf+o_ (36)
IN(1—e V)2 Therefore, we have
Bo=————5— (32)

D(l_e*Z/T:) o
R*(7)={exdD+D exp(— 7/7%)]—eP}e®*. (37
It is easy to check the validity of E¢32) by computer simu- o . _
lations. We show plots oB.. as functions ofr* estimating AS Shown in Fig. 9.R*(7) described by Eq(37) can ap-
from the slope of a log-log plot of CDFs calculated numeri- Proximate Eq.(S) havmg the same value of; as 7 .
cally with fixing D and \ in Fig. 8. It is found that the Namely, 7 is practically equal tO"C'.The agr(_aement Qf the
numerical results fit with the theoretical curve. ExpandingPOWer law exponent of the probability density function be-
the exponentials in Eq(32) over the powers, we take for tyveer_l num_erlca_l simulation and that of the analytical deriva-
large values of* an approximation tion, in which higher-order moments af,= In|b(t)| are ne-

¢ glected, suggests that higher-order moments of a stochastic
variable\; should not seriously affect the relation between
*—1 (33) the power law exponent of the probability density of the

amplitude and the correlation time of multiplicative noise.

However, the reason why the effects of the higher-order mo-
which means thag is inversely proportional to the autocor- ments of multiplicative noise are negligible in the present
relation time. system is an open question.
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FIG. 9. Autocorrelation function of colored Gaussian noise  FIG. 10. Log-log plots of cumulative distributions of the renor-
R(7) and autocorrelation function approximated by, R* (7). malized additive noise fok=1, k=3, k=5, andk=10. We find
Notice thatR() is given appropriate approximation B/ having  clear power law tails for largek, and their slopes are showing
the same value of} as~. tendency to converge to a certain slope.

B. Applying the renormalizgtion procedure to the white volving the termH'm:Nkb(m—l). Fortunately power law
Gaussian case distributions of renormalized additive noise are not effective
Here, in order to confirm the validity of the renormaliza- in estimation of the exponerg.
tion procedure, we apply it to the RMP with a white multi-
plicative noise. Applying Eq(11) to the renormalized mul- V. CONCLUSIONS

tiplicative noiseB,(N) we have i ) . .
We have investigated numerically and analytically the

k(N+1)-1 B power law exponent of the probability distribution for the
(|By|Pky= II bm-1) (38)  amplitude of the discrete time model of Langevin systems
m=kN with a stationary Gaussian colored multiplicative noise. We

found that the exponent depends not only on the distribution
of multiplicative noise but also on the correlation time of the
multiplicative noise. We discovered by numerical simulation

Becausdb(m)} is a white noise, an average on the left-hand
side can be calculated by usikth integrations such as

k(N+1)-1 By that the power law exponent is inversely proportional to the
< H b(m—1) > correlation time of the multiplicative noise for a large value
m=kN of the correlation time and saturates to a finite value when it
approaches zero. We showed that this experimental observa-
= f |b1b,- - - by |PkW(b)W(b,) - - - W(by) tion over a wide range of the correlation time can be verified
analytically by applying a renormalizing procedure to the
x db,db,- - -dby Langevin equation with multiplicative colored noise if the
approximation that the logarithm of the colored Gaussian
=(|b]A9)k. (39  noise is also Gaussian is permitted. The reason that this as-

We get (bB)=1 for any renormalization levek from sumption i's pt_ermitted is an open problem fqr fut'ure study.

A - . The question is also a subject for future studies if the same
(IB/")=1. Actually it is obvious that thg power law expo- yojation holds between the correlation time and the power
nent/3 does not depend on the renormalization lévélie to |4y exponent for the continuous time Langevin system with

Eq. (12), and these resuits are consistent. multiplicative colored noise. The results obtained in this pa-
o _ N _ per would be useful by giving a universal relation between
C. Distributions of renormalized additive noise the power law exponent and the correlation time in the

Contrary to the case without any amplification, the renor-Langevin type of systems with multiplicative noise, which
malized additive noise in the RMP is scaled by a power lancan be found in various systems as described in Sec. I.
distribution, not by a Gaussian. As shown in Fig. 10 it is

four_1d that its cumulati\_/e _distribution_converges rapidly to a ACKNOWLEDGMENTS
stationary power law distribution, which has the same power
law tail in the cumulative distribution of. The reason for One of the authorsA.-H.S) wishes to thank Yoshinori

this power law can be attributed to the internal structure inHayakawa and Tsuyoshi Hondou for stimulating discussions.
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