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Invariant power law distribution of Langevin systems with colored multiplicative noise

Aki-Hiro Sato,1 Hideki Takayasu,2 and Yasuji Sawada1
1Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan

2Sony Computer Science Laboratory, Takanawa Muse Building, 3-14-13 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-0022, J
~Received 19 July 1999!

The random multiplicative process is studied for the case of a colored multiplicative noise with exponen-
tially decreasing autocorrelation function. We observe the power law exponent of probability distribution in a
statistically steady state numerically to clarify the effect of finite correlation time. The renormalization proce-
dure is applied to derive the power law exponent theoretically. The power law exponent is inversely propor-
tional to the autocorrelation time of the multiplicative noise.

PACS number~s!: 05.40.Ca, 02.50.2r, 05.10.Cc, 05.70.Ln
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I. INTRODUCTION

Fluctuations following power law distributions have be
found in various fields, such as size distribution of av
lanches in a sandpile model@1#, probability distribution of
stock market price changes in economics@2#, and probability
distribution of the fluctuations of the intervals of heartbe
@3#. There have been many attempts to clarify the mechan
of the power law behavior. For example, the concept of s
organized criticality is based on the idea that open syst
showing the power law exhibited by some open systems m
be understood in analogy to automatic setting of the par
eters at the critical point of a second-order phase transi
@1#.

The random multiplicative process~RMP!, which is a
generalized version of the Langevin equation involving
randomly multiplicative coefficient, is another type
mechanism generating a power law behavior. It has b
widely introduced as a model to understand aspects of
singular behavior in nonlinear dynamics, such as the on
intermittency@4,5#, conformation of polymers in random ve
locity field @6#, the model of stock market price changes
economics@7#, and so on@8,9#.

In our previous study@10# we have proved rigorously tha
the discrete version of the RMP with both a positive mu
plicative and additive noises converges to a statistic
steady state that is characterized by power law distribut
We have analytically obtained the equation for determin
the power law exponent as a function of a stochastic prop
of multiplicative noise by using a characteristic functio
method. The exponentb is given by the value where th
b-order moment of the multiplicative noise is equal to uni
The existence of the additive noise is essential but its sta
tical properties are known to be less relevant. It has b
analytically proved that the probability density of the RM
follows power law@4,11,12#.

It is useful to consider the effect of correlated multiplic
tive noise to extend the applicability of the RMP to comp
cated systems in the real world. For example, aspects o
behavior in on-off intermittency@4,5# and the noisy coupled
maps@13# can be regarded as RMPs with colored multip
cative noise, and they have been analyzed by using thelocal
or finite time Lyapunov exponent. In the study of particles’
motion in turbulence Deutsch has been interested in the R
PRE 611063-651X/2000/61~2!/1081~7!/$15.00
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with colored multiplicative noise@14# since the velocity field
in turbulence has strong autocorrelation. Cˇ enys and Lustfeld
have studied the case of the RMP with chaotic multiplicat
noise in on-off intermittency@5# and Nakao@16# has reported
that the RMP with colored multiplicative noises shows t
power law behavior by numerical simulations.

A question naturally arises whether there is a simple
lation between the autocorrelation function of multiplicati
noise and the power law exponent as well as in the cas
white multiplicative noise. The aim of this paper is to qua
titatively investigate the power law behavior of the RM
with colored multiplicative noise by numerical simulation
and to clarify the relation between the autocorrelation a
the power law exponent theoretically.

In Sec. II we perform a numerical simulation of the RM
and observe the relation between the exponent of the po
law distribution and the autocorrelation time. In Sec. II bas
on the idea of renormalization procedure we analytically
timate the relation. We discuss the validity of the meth
that we used in the theoretical approach in Sec. IV and c
cluding remarks are summarized in Sec. V.

II. NUMERICAL SIMULATIONS

A. Model and simulation

We treat the discrete version of the RMP

x~ t11!5b~ t !x~ t !1 f ~ t !, ~1!

where multiplicative noiseb(t) represents random dissipa
tion (b,1) or magnification (b.1) and f (t) represents an
additive noise. In the following analysis we assume thatb(t)
is statistically independent off (t), so that the cross correla
tion betweenb(t) and f (t) vanishes, and we use the additiv
noise f (t) that is a zero-mean white Gaussian given by

U~ f !5
1

A2ps
expS 2

f 2

2s2D , ~2!

where the standard deviation is fixed ass50.01 throughout
our numerical simulation.

For simplicity we specify the colored multiplicative nois
as a noise having the following stationary, Gaussian, M
kovian property that has zero average and varianceV:
1081 ©2000 The American Physical Society
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W~b!5
1

A2pV
expS 2

b2

2VD ~3!

with autocorrelation function given by

R~t!5^b~ t !b~ t1t!&2^b~ t !&^b~ t1t!&, ~4!

which decays exponentially

R~t!5V exp~2t/tc!, ~5!

wheretc is an autocorrelation time. It is known that we ca
easily generate such types of random sequences by an
toregressive stochastic process@15#. In order to satisfy the
stochastic properties Eqs.~3! and ~5!, we take the following
stochastic process:

e1/tcb~ t11!2b~ t !5VAe2/tc21w~ t !, ~6!

wherew(t) is a normalized zero-mean white Gaussian no
We make numerical simulations of Eq.~1! for parameters

V andtc . We show an example of time seriesx(t) in Fig. 1.
For investigating the tails in the probability distribution it
convenient to use the cumulative distribution functi
~CDF!, P(>uxu), defined as

P~>uxu!5E
2`

2uxu
p~x8!dx81E

uxu

`

p~x8!dx8, ~7!

where p(x) denotes a probability density function ofx.
When the probability density has the power law tails

p~x!}uxu2b21 ~0,b,2!, ~8!

one has

P~>uxu!}uxu2b, ~9!

and we can estimate the power law exponentb from its slope
of the log-log plot. We also take the CDF from a time ser
on 106 steps for each set ofV andtc . As shown in Fig. 2 we
can find clear power law tails in the CDFs. In all cases
can find power law distributions and the exponentb obvi-
ously depends on bothV andtc .

In order to investigate more quantitatively the depende
of b on V andtc we plotb as a function ofV andtc . From
Fig. 3 we may expect that the form ofb(V,tc) is simple

FIG. 1. Time series ofx(t) for V51.0 andtc51.0 in the case of
the colored Gaussian multiplicative noise.
au-

.

s

e

e

since we find isometricb curves mutually nonintersecting
Especially noticing the relation betweenb andtc , from Fig.
4, which is taken for fixedV, b is estimated to be inversel
proportional totc for large value oftc , namely, we have

b}tc
21 . ~10!

B. The white Gaussian limit

The colored Gaussian noise given by Eq.~6! converges to
a white Gaussian noise in the limit oftc→0. Here, we dis-
cuss the limit of the zero-mean white Gaussian multiplicat
noise. For this case we cannot directly apply the form
obtained in our previous study to the zero-mean wh
Gaussian noise in order to estimate the power law expon
b because they take both positive and negative values. In
same way as we have shown in our previous study we
easily generalize the formula for a noise having both posit
and negative values

FIG. 2. Log-log plots of the cumulative distributions ofx for
various values ofV and tc . Filled squares representV50.49 and
tc51.0, unfilled squaresV50.49 andtc55.0, filled circles V
51.0 andtc51.0, and unfilled circlesV51.0 andtc55.0.

FIG. 3. Each curve represents isometricb for the function
b(V,tc).
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^ubub&51 ~0,b,2!. ~11!

Using Eq.~11! one can analytically calculateb as a function
of a varianceV of the Gaussian for the case of zero-me
white Gaussian multiplicative noise. Applying Eq.~3! to Eq.
~11! we have

1

Ap
~2V!b/2GS b11

2 D51, ~12!

whereG(•••) is the gamma function.
We show an example of time series in Fig. 5 in the wh

Gaussian limit. We take the CDF from 106 steps of the time
series for each fixed value ofV. It is found that for each
value of V a slope of log-log plot changes in Fig. 6. W
obtain the relation betweenV andb from each slope of the
CDF. As shown in Fig. 7 we can confirm that the theoreti
solution Eq. ~12! fits the numerical estimation precisel
These results mean that one can fully characterize the po
law exponent as a feature of multiplicative noise in the lim
tc→0. Therefore, we find thatb converges to a finite value
on the limit oftc→0 in spite of Eq.~10! as shown in Fig. 4.

C. Intuitive understanding of the result

We can give the intuitive reason why the power law e
ponent b is inversely proportional totc in the following

FIG. 4. Log-log plots of relation betweenb and tc on some
fixed values ofV. Each mark represents a numerical result forV,
and a solid line representsb5tc

21 .

FIG. 5. Time series ofx(t) for V51.0 in the case of the white
Gaussian multiplicative noise.
l

er
t

-

way. We may deal withbtc as an independent set of mult
plicative noises because we can roughly estimate that m
plicative noises keep the same values in the intervaltc . Thus
we may apply Eq.~11! for a white multiplicative noise to a
renormalized multiplicative noisebtc,

^ubtcub&51. ~13!

Since the renormalized multiplicative noise may be expec
to depend onV alone, we find the exponentc(V) for btc ,

btc5c~V!, ~14!

wherec(V) is a power law exponent for the renormalize
multiplicative noisebtc and a function ofV alone. Thusb is
inversely proportional totc . In Sec. III we study the relation
between the power law exponent and the autocorrela
time more rigorously based on an analytical estimation of
intuitive idea of renormalization.

III. THEORETICAL ANALYSIS

A. Renormalization procedure

Focusing on the relation that power law exponentb is
inversely proportional to the autocorrelation timetc , we
analyze the RMP theoretically. Our idea of derivation
based on a kind of renormalization procedure that has

FIG. 6. Log-log plots of the cumulative distributions ofx for
V51.0, V50.81, andV50.64 in the case of the white Gaussia
multiplicative noise. We find that each slope of plots changes
the value ofV.

FIG. 7. The power law exponentb vs varianceV of a white
Gaussian multiplicative noise. Circles represent numerically e
mated values and the curve gives the theoretical relation.
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been argued by Nakao@16#. Substituting Eq.~1! recursively
k times we have the renormalized representation fromt2k
11 step tot11 step

x~ t11!5H )
m50

k21

b~ t2m!J x~ t2k11!

1 (
l 50

k22 H )
m50

l

b~ t2m!J f ~ t2 l 21!1 f ~ t !.

~15!

Defining the renormalized multiplicative noiseBk(N) and
renormalized additive noiseFk(N) as

Bk~N!5 )
m5Nk

(N21)k21

b~m21!, ~16a!

Fk~N!5 (
l 5Nk

(N11)k22 H )
m5Nk

l

b~m21!J f ~ l 22!1 f ~kN21!,

~16b!

we obtain the renormalized equation with intervalsk for N
51,2, . . . ,

xk~N!5Bk~N!xk~N21!1Fk~N!, ~17!

wherexk(N) representsx(kN21).

B. Another representation of multiplicative noise

We introduce a stochastic variablel t defined byb(t)
5 exp(lt1iut), in order to approximate Eq.~17!. Here u t
represents a binary random variable taking the value of 0
p with the same probability, which is required to represe
the change of sign inxk(N) and xk(N21). l t , of course,
differs from that ofb(t). As we discuss in Sec. IV A we ca
make a reasonable assumption thatl t is a stationary Gauss
ian noise having an averagel̄5^ lnubu& and its autocorrelation
function km decreases exponentially

km5^ln1mln&2^ln1m&^ln&5D exp~2m/tc* !, ~18!

whereD is a coefficient andtc* is the autocorrelation time
The value oftc* is shown to be nearly equal totc by com-
paring the two autocorrelation functions, which we al
show in Sec. IV.

The effect ofu t does not play any role in the following
calculation becauseu t is a factor that randomly reverses th
sign of multiplicative noises and the effective amplitude
always unity. Approximating the renormalized multiplicativ
noiseBk(N) by l t we haveBk(N)5 exp(Lk,M), where

Lk,N5 (
m5kN

(N21)k21

lm21 . ~19!

SinceLk,N is stationary forN the autocorrelation function o
Lk,N on the renormalized levelk, Ak,M is given as
d
t

Ak,M5^Lk,M1NLk,N&2^Lk,M1N&^Lk,N&

5^Lk,M11Lk,1&2^Lk,M11&^Lk,1&

5^~lMk111•••1l (M21)k!~l11•••1lk!&2k2l̄2

5 (
n51

k21

nk (M11)k2n1kkMk1 (
n51

k21

nk (M21)k2n .

Substituting Eq.~18! to the end term of the above equatio
we have

Ak,M52D
e21/tc*

~12e21/tc* !2
e2kM/tc* @cosh~k/tc* !24#,

~20!

which converges to ad function in the limit of k→`. As
Lk,N can be approximated by a white noise for largek, we
may apply the equation determining the power law expon
Eq. ~11! to the renormalized multiplicative noiseLk with
largek.

On the other hand, it is easy to confirm that the autoc
relation function of the renormalized additive noiseFk(N) is
a white noise, actually the autocorrelation function ofFk(N),
Ck(M ), is calculated as

Ck~M !5^Fk~N!Fk~N1M !&2^Fk~N!&^Fk~N1M !&50.
~21!

Replacingb with eLk in Eq. ~11! we have

^ebkLk&51, ~22!

where bk is the power law exponent of the renormalize
variablexk(N). Rewriting Eq.~22! by an integral

E PL~L;k!ebkLdL51, ~23!

wherePL(L;k) represents the probability density ofLk in
the renormalized levelk. Moreover by making a transforma
tion of the probability density involving Dirac’sd function
from PL(L;k) to qk(lk , . . . ,l1),

PL~L;k!5E qk~lk , . . . ,l1!

3d~lk1•••1l12L!dlk•••dl1 , ~24!

whereqn(l1 ,l2 , . . . ,ln) is a k-joint probability density of
$l%, which is represented by ak-dimensional Gaussian dis
tribution

qn~l1 ,l2 , . . . ,ln!

5
1

~2p!n/2uRu1/2
expS 2

1

2 (
i , j 51

n

Ri , j
21~l i2l̄ !~l j2l̄ !D ,

~25!

where Ri , j denotes the covariance matrix that is equal
k u i 2 j u , so that
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Ri , j

5F D De21/tc* ••• D2(n21)/tc*

De21/tc* D A

A

De2(n21)/tc* De2(n22)/tc* ••• D

G ,

~26!

and uRu means the determinant ofRi , j . From Eq.~23! and
Eq. ~24! we have

E ebk(lk1 . . . 1l1)qk~lk , . . . ,l1!dlk•••dl151. ~27!

Substituting Eq.~25! for Eq. ~27! we have

expFbkkl̄1
bk

2

2 (
i , j 51

k

Ri , j G51, ~28!

so that

bkkl̄1
bk

2

2 (
i , j 51

k

Ri , j50. ~29!

As a nonzero solution we get

bk52
2kl̄

(
i , j 51

k

Ri , j

. ~30!

Calculating the denominator on the right-hand side using
~18!,

bk52
2kl̄~12e21/tc* !2

D@k~12e22/tc* !22e21/tc* ~12e2k/tc* !#
. ~31!

Finally in the limit of k→` we have

b`52
2l̄~12e21/tc* !2

D~12e22/tc* !
. ~32!

It is easy to check the validity of Eq.~32! by computer simu-
lations. We show plots ofb` as functions oftc* estimating
from the slope of a log-log plot of CDFs calculated nume
cally with fixing D and l̄ in Fig. 8. It is found that the
numerical results fit with the theoretical curve. Expandi
the exponentials in Eq.~32! over the powers, we take fo
large values oftc* an approximation

b'2
l̄

D
tc*

21 , ~33!

which means thatb is inversely proportional to the autoco
relation time.
q.

-

IV. DISCUSSION

A. Relation betweentc and tc*

The autocorrelation time ofl t , tc* , in a theoretical cal-
culation is not automatically identical to the autocorrelati
time of b, tc , in a numerical simulation. In the following we
verify tc'tc* by calculating a relation betweenR(t) in Eq.
~5! and R* (t) approximated byl t . The autocorrelation
function R* (t) is expressed in terms ofl t as

R* ~t!5^el tel t1t&2^el t&^el t1t&. ~34!

From Eq.~26! one can calculate the first term and the seco
term on the right-hand side

^el tel t1t&5E el tel t1tqn~lk , . . . ,l1!dlk•••dl1

5 exp@D exp~2t/tc* !#e2l̄1D ~35!

and

^el t&5^el t1t&5e2l̄1D. ~36!

Therefore, we have

R* ~t!5$exp@D1D exp~2t/tc* !#2eD%e2l̄. ~37!

As shown in Fig. 9,R* (t) described by Eq.~37! can ap-
proximate Eq.~5! having the same value oftc as tc* .
Namely,tc* is practically equal totc . The agreement of the
power law exponent of the probability density function b
tween numerical simulation and that of the analytical deri
tion, in which higher-order moments ofl t5 lnub(t)u are ne-
glected, suggests that higher-order moments of a stoch
variablel t should not seriously affect the relation betwe
the power law exponent of the probability density of t
amplitude and the correlation time of multiplicative nois
However, the reason why the effects of the higher-order m
ments of multiplicative noise are negligible in the prese
system is an open question.

FIG. 8. Plots ofb as functions oftc fixing D and l̄. Unfilled

circles represent numerical results forD51.0 andl̄521.0, and

filled circles are forD50.64 andl̄521.0. A solid curve repre-

sents the theoretical equation forD51.0 and l̄521.0, and a

dashed curve is forD50.64 andl̄521.0.
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B. Applying the renormalization procedure to the white
Gaussian case

Here, in order to confirm the validity of the renormaliz
tion procedure, we apply it to the RMP with a white mul
plicative noise. Applying Eq.~11! to the renormalized mul-
tiplicative noiseBk(N) we have

^uBkubk&5K U )
m5kN

k(N11)21

b~m21!UbkL . ~38!

Because$b(m)% is a white noise, an average on the left-ha
side can be calculated by usingkth integrations such as

K U )
m5kN

k(N11)21

b~m21!UbkL
5E ub1b2•••bkubkW~b1!W~b2!•••W~bk!

3db1db2•••dbk

5^ububk&k. ~39!

We get ^bbk&51 for any renormalization levelk from
^uBkub&51. Actually it is obvious that the power law expo
nentb does not depend on the renormalization levelk due to
Eq. ~11!, and these results are consistent.

C. Distributions of renormalized additive noise

Contrary to the case without any amplification, the ren
malized additive noise in the RMP is scaled by a power l
distribution, not by a Gaussian. As shown in Fig. 10 it
found that its cumulative distribution converges rapidly to
stationary power law distribution, which has the same pow
law tail in the cumulative distribution ofx. The reason for
this power law can be attributed to the internal structure

FIG. 9. Autocorrelation function of colored Gaussian no
R(t) and autocorrelation function approximated byel t, R* (t).
Notice thatR(t) is given appropriate approximation byR* having
the same value oftc* astc .
n

-

r

-

volving the term)m5Nk
l b(m21). Fortunately power law

distributions of renormalized additive noise are not effect
in estimation of the exponentb.

V. CONCLUSIONS

We have investigated numerically and analytically t
power law exponent of the probability distribution for th
amplitude of the discrete time model of Langevin syste
with a stationary Gaussian colored multiplicative noise. W
found that the exponent depends not only on the distribu
of multiplicative noise but also on the correlation time of t
multiplicative noise. We discovered by numerical simulati
that the power law exponent is inversely proportional to
correlation time of the multiplicative noise for a large valu
of the correlation time and saturates to a finite value whe
approaches zero. We showed that this experimental obse
tion over a wide range of the correlation time can be verifi
analytically by applying a renormalizing procedure to t
Langevin equation with multiplicative colored noise if th
approximation that the logarithm of the colored Gauss
noise is also Gaussian is permitted. The reason that this
sumption is permitted is an open problem for future stu
The question is also a subject for future studies if the sa
relation holds between the correlation time and the pow
law exponent for the continuous time Langevin system w
multiplicative colored noise. The results obtained in this p
per would be useful by giving a universal relation betwe
the power law exponent and the correlation time in t
Langevin type of systems with multiplicative noise, whic
can be found in various systems as described in Sec. I.
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